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Abstract. Using Monte Carlo simulations, we study the mobility of a harmonic triangular
lattice subjected to an incommensurate short-wavelength potential and a steady driving force.
At zero temperature(T = 0) the mobility jumps from zero to a finite value at a critical forceFc.
For T > 0 the mobility shows Arrhenius behaviour, and grows exponentially with driving force
before saturating at the free-particle limit forF > Fc. We find no evidence of a sharp depinning
transition at finite temperature. This suggests that observations of depinning of charge-density
waves, and the irreversibility line in high-temperature superconductors, may simply represent the
onset of detectable motion on laboratory timescales, rather than an underlying phase transition.

1. Introduction

Wigner crystals [1], charge-density waves [2], atomic monolayers on crystal surfaces [3],
magnetic bubble lattices [4], and vortex lattices in superconductors [5] are all examples of
elastic lattices weakly coupled to an incommensurate background. It is of interest to study
the mobility of an elastic lattice subjected to a background potential, under a steady driving
force, since this model captures some of the key features of these systems, in particular
the depinning of charge-density waves, and the irreversibility line in high-temperature
superconductors. As one crosses the irreversibility line in the temperature–magnetic field
plane, the response of a superconductor changes from hysteretic to reversible, due to a
drastic increase in vortex mobility. In the presence of a current, the Lorentz force drags the
vortices through the dissipative background, causing Ohmic resistance.

At low temperatures, and in the absence of pinning or a driving force, vortices form a
triangular lattice. Random pinning destroys long-range translational order [6], leading to a
vortex glass [7], in which translational correlations are expected to decay algebraically [8],
while (hexatic) orientational order persists on a larger scale [9, 10]. In this immobile, low-
temperature phase, the vortex is fixed to the pinning background. At higher temperatures,
(i.e., above the irreversibility line,TIR), there is a mobile phase that may be liquid-like.
Topological defects, however, are largely absent in well-annealed systems at moderate to
high magnetic fields [5].

Two scenarios have been suggested for the irreversibility line [11]. In one the vortex
lattice melts atTIR; above this temperature the shear modulus is zero, and vortices are
mobile, since the random background does not pin individual vortices. Alternatively, it is
possible that the lattice is preserved on a large scale even above the irreversibility line, and
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that it simply depins and becomes mobile whenT > TIR. Some experiments point to a
first-order transition at the irreversibility line, which has been interpreted as the melting
of an ordered flux-line lattice [12]. Other observations suggest that the irreversibility
line and melting are distinct phenomena [13]. Recent molecular dynamics simulations
in two dimensions [14] allow a role for both scenarios: they show melting [15–17] at
the irreversibility line in the limit of zero pinning, and a crossover to thermally activated
depinning of individual vortices, rather than a phase transition, for strong pinning. Simple
arguments based on an ‘effective shaking temperature’, and simulations of the Langevin
equation, indicate that when the driving force exceeds a critical value (well above the
depinning threshold), long-range translational order is restored to the vortex lattice [18].
This view has been challenged by Giamarchi and Le Doussal, who argue that a moving glass
state, free of topological defects, characterizes driven lattices in the presence of disorder
[19]. The plastic flow regime has recently been studied in the absence of pinning by Braun
et al, who solve the time-dependent Ginzburg–Landau equations numerically [20].

In addition to simulations of the relatively realistic models mentioned above, interest
in the depinning transition has also prompted study of simpler models. An example is a
driven elastic string in a random potential. Simulations at zero temperature demonstrated
the existence of a threshold driving force below which the string is pinned, and above
which it is mobile [21]. In this work we employ Monte Carlo simulations to study a
minimal model of a defect-free, driven elastic lattice in a static, incommensurate background
potential. (Because each particle is connected to its nearest neighbours—and only to its
nearest neighbours—by a harmonic spring, it is not possible for defects such as dislocations
to form.) In addition to its simplicity, our choice of a defect-free lattice is motivated
by experimental decoration pictures showing remarkably large regions free of dislocations.
Since the background potential is incommensurate with the unstrained lattice, well-separated
regions of the latter experience essentially uncorrelated potentials, and it seems reasonable
to expect that our model captures the main effects of a truly random potential. We address
the question of whether a transition between low- and high-mobility phases is suppressed
in the absence of defects. At zero temperature we find a sharp depinning transition at a
critical forceFc(0). For finite temperatures, by contrast, the mobility grows exponentially
with the driving force before saturating whenF > Fc(0), and shows Arrhenius temperature
dependence. There is no evidence of a sharp transition forT > 0. Because of the very
rapid increase in mobility with driving forceF , and with temperature, our results permit
one to define an effective depinning line,Fc(T ), below which the mobility appears to be
zero on the timescale of the simulations.

It should be stressed that our model can afford only a qualitative description of pinned
vortex lattices, as it employs a harmonic lattice rather than a logarithmic interaction
between vortices, and a short-wavelength periodic background, rather than a random pinning
potential. We believe that the observed phenomenology is quite robust, however, and will
persist for a wide variety of interactions. Indeed the effective depinning line,Fc(T ), obtained
from our simulations is qualitatively similar to that observed in experiment and in molecular
dynamics simulations [18]. In section 2 we introduce the model and simulation method.
Our results are presented in section 3.

2. Model

We consider a two-dimensional triangular lattice of particles coupled by a harmonic,
nearest-neighbour interaction, and subjected to a periodic potential and a uniform external
force. In an earlier study of the model (without the driving force) [10], we found short-
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range translational correlations and long-range orientational correlations, as predicted [9]
and observed [5] for pinned flux-line lattices of high-temperature superconductors. Let
xi = (xi, yi) denote the position of particlei. For systems with open boundaries, the
potential energy is

E = κ

2

∑
〈i,j〉
(ri,j − a)2+

∑
〈i,j〉

uHC(ri,j )+ S
∑
i

coskxxi coskyyi − F
∑
i

xi (1)

where the first two sums run over all nearest-neighbour pairs in the triangular lattice,
ri,j = |xi−xj |, anduHC(r) is a hard-core potential, infinite forr < 1/2, and zero otherwise.
All quantities are dimensionless in our formulation. The simulations employκ = 2, a = 1,
andkx = ky = 40. (The hard-core contribution is included to prevent severe distortions of
the lattice under a large driving force.) The third term in equation (1) represents a static
periodic potential having the symmetry of a square lattice, and hence incommensurate with
the triangular lattice. (The wavelength, 2π/kx ' 0.157, of the background potential is
small compared to the elastic lattice spacing.) Our choice of parameters corresponds to the
weak-pinning regime in which the translational (Larkin–Ovchinnikov) correlation length is
large compared to the lattice constant, as we have demonstrated previously [10].

We simulated lattices ofM particles to a side; both periodic and open lattices were
studied. The former were rhomboid in form, the latter hexagonal. It is important to note that
in the periodic case, the background potential (the third term in equation (1)) is unaltered:
we simply provide particles at an edge of the central cell with their full complement of
neighbours. (A particle on the rightmost edge, for example, interacts with the periodic
images of two particles on the leftmost edge.) In periodic systems the driving forceF x̂ is
nonconservative, and cannot be represented as in equation (1), by the gradient of a potential.
(This situation is familiar from studies of driven systems [22].) Study of periodic systems
is motivated by a desire to rule out edge sites as special promoters of movement. In fact
we find minimal difference between the mobilities for the two kinds of boundary.

In each step of the simulation, a particle is selected at random and subjected to a
trial displacement uniform on a square of sideD, symmetric about the origin. The move
is accepted if the total change in energy1E 6 0; if 1E is positive the new position is
accepted with probability e−1E/T . Our time unit comprises one attempted move per particle.
While the Metropolis algorithm employed here is well suited to sampling an equilibrium
ensemble, its application to dynamics requires some comment. Clearly all inertial effects are
absent, as is appropriate to the strong-damping limit, in which velocityv = Fnet /η, where
η is the friction coefficient. Monte Carlo simulations are widely employed for studying
polymer dynamics [23], and are equally valid for studying the motion of the vortex lattice,
which is also strongly damped.

A related issue is the choice ofD, which controls the step size, but has no obvious
physical analogue. On general grounds, one would prefer to keepD fixed during a particular
series of studies, and in any case small compared to the lattice spacinga = 1. Very
small values ofD will lead, on the other hand, to a slow, inefficient simulation. Another
aspect bearing on the choice ofD arises from consideration of single-particle motion in
the tilted sinusoidal potential,U(x) = S coskx − Fx, at temperature zero. A classical
particle is trapped in a well forF < F0 = kS. But in a Monte Carlo simulation with
finite displacements, the motion becomes unbounded at a force somewhat smaller thanF0,
because acceptance of a displacement depends only on the energy difference between the
initial and final positions. Thus it is possible for the particle to hop over a barrier of width
less thanD. To minimize this effect, we must limit the magnitude ofD. For D = 0.02
andk = 40, the values used in our studies, the actual force,F ∗ required for escape is only
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1% smaller thanF0. Since the step size is small compared to the lattice constant, it is also
considerably smaller than the Larkin–Ovchinnikov correlation length.

SinceD is fixed, the velocity saturates, and the mobility is∝1/F for large F . To
eliminate this artifact of the simulation method, we reportnormalizedmobilities:

µ = VCM/Fµ0 (2)

whereVCM is the mean centre-of-mass (CM) velocity along the direction of the driving
force, andµ0 is the free-particlemobility in our algorithm:

µ0 = 1

F

{
D

8
− T

DF

[
T

F
−
(
T

F
+ D

2

)
e−DF/2T

]}
. (3)

This expression is derived by considering a single particle moving in the potential−Fx,
and undergoing random displacements with anx-component uniform on [−D/2,D/2].
Displacements with1x > 0 are always accepted. AtT = 0 all displacements with1x < 0
are rejected, so the mean displacement is〈1x〉 = D/8. For T > 0, displacements with
1x < 0 are accepted with probability exp[F 1x/T ]. Dividing the mean displacement per
move by the driving forceF yields equation (3).

Figure 1. The mobility against the driving force;S = 0.2. Open diamonds: single particles,
T = 0; filled diamonds: lattice (M = 10, periodic boundaries),T = 0; 4: single particles,
T = 0.001;�: lattice,T = 0.001,M = 10;×: the same, except thatM = 20.

3. Simulation results

We studied the CM motion of the driven harmonic lattice for background strengthsS =
0.05, 0.1, and 0.2. Most of our results are for periodic systems ofM2 = 100 particles.
Since we found good agreement between mobilities obtained with different system sizes
(M = 20, 60—see figure 1), and with different boundary conditions, we usedM = 10
(with periodic boundaries), since this permits longer simulations for a given cpu time. In
order to eliminate transient effects, each study at givenS, T , andF extended to a time
>3× 106, and in some cases (for very small mobilities), up to 5× 107. We monitored
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the mobility, and the elastic and potential energies, allowing us to identify and discard data
reflecting the initial, nonsteady phase of the motion.

Our main results are for the steady-state normalized mobilityµ. We begin by contrasting
the mobility of an isolated particle with that of the lattice (see figure 1). At temperature
zero, the mobility jumps from zero to a finite value as the force is increased beyond a
critical value. For a single particle, the effective barrier to motion disappears at forceF ∗,
as discussed above. The zero-temperaturelattice mobility also exhibits a jump, but at a
significantly smaller force,Fc(0) = 1.70, 3.525, and 7.31, forS = 0.05, 0.1, and 0.2,
respectively. (ThusFc(0)/S ≈ constant.) The incommensurate background potential is
less effective in pinning the lattice, since, due to elastic forces, not all particles sit at local
potential minima, even atT = 0. The lattice, that is to say, ‘floats’ over the incommensurate
background, and at any moment certain particles are able to move in response to a driving
forceF > Fc(0). Their displacement can then induce their neighbours to move. At larger
values of the force (i.e., forµ > 0.1), the single-particle mobility exceeds that of the lattice,
as elastic forces begin to impede the motion. At finite temperature both the single-particle
and lattice mobilities show an exponential dependence upon force,µ ∝ exp(−1V/T ), as
expected for thermally activated transitions over a barrier1V ∝ Fc(0) − F . Again the
lattice shows a substantially greater mobility than single particles, because the background
is incommensurate with the unstrained lattice.

Figure 2. The mobility against the driving force for the background strengthS = 0.05, and
open boundaries. The temperatures, from right to left, are: 0, 2×10−4, 5×10−4, 0.001, 0.002,
0.003, 0.004, 0.005.

The dependence of the mobility on the driving force for a series of temperatures is
illustrated in figure 2, which is forS = 0.05. (We obtained qualitatively similar results for
S = 0.1 and 0.2.) At finite temperatures there is a regime in which the mobility depends
exponentially on the force,µ ∝ exp(cF/T ). As F is increased beyondFc(0), there is
a smooth approach to the limiting free-particle mobility,µ = 1. The dependence of the
mobility on the temperature at fixedF is shown in figure 3, which confirms the Arrhenius
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Figure 3. The mobility against the reciprocal temperature forS = 0.1 and fixed driving force.◦: F = 0.5; �: F = 1.5; ♦: F = 3.0.

Figure 4. The critical force against the temperature forS = 0.2, and periodic boundaries.

behaviour noted above.
An outstanding question in the study of flux lattices is the existence of a sharp transition

in mobility at nonzero temperatures. In the present study we only observe a sharp transition
from a strictly immobile lattice to nonzero mobility at zero temperature. The exponential
dependence ofµ uponF (at finite temperatures) does however imply that over a narrow
range of driving force there will be a change from a small (but nonzero) mobility to an
absence of any apparent displacement of the centre of mass on simulation timescales. If
we define a ‘temperature-dependent critical force’Fc(T ) such that forF < Fc(T ), the
lattice is motionless over an interval of 5× 106 steps (comparable to the duration of our
simulations); the resulting critical force approaches the zero-temperature value smoothly as
T → 0. (Observations extending over considerably longer intervals reveal that the mobility
is not strictly zero, but rather is extremely small. Not surprisingly, forF well below
Fc(T ) our longest runs show no displacement. But we have no evidence of a departure
from the exponential dependence of mobility on force.) The critical forceFc(T ) decreases
rapidly with increasing temperature, as shown in figure 4. The qualitative dependence of
the critical force on temperature is quite similar to that observed in experiments on flux
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Figure 5. The centre-of-mass motion forS = 0.2, T = 5×10−4, and (bottom to top)F = 6.60,
6.61, and 6.65.

lattices in superconductors. WhenF is well above the critical force, we observe steady
motion of the lattice. But forF & Fc(T ), the motion is erratic, consisting of a series of
jumps by individual particles or small groups, separated by periods during which the lattice
is immobile (see figure 5). Our results pertain to low temperatures, as may be seen by
noting that if our energy unit (the elastic coupling times the square of the lattice constant)
is taken as of the order of the Fermi energyeF , thenkBT 6 0.005eF . In any event,kBT
represents the smallest energy scale in our model.

In summary, we have studied the dynamics of a pinned elastic lattice subject to a
steady driving force. There is a sharp depinning transition at zero temperature, while at
finite temperatures we observe thermally activated collective motion. Due to the sensitive
dependence of mobility on driving force, one may define an effective critical forceFc(T )

for motion on observational timescales. Our results indicate that a depinning line similar to
that observed in high-temperature superconductors can be found in a model free of defects.
This supports the assertion that depinning need not correspond to a phase transition.
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